The source content for blog.juliobiason.me
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

115 lines
4.6 KiB

<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- Enable responsiveness on mobile devices-->
<!-- viewport-fit=cover is to support iPhone X rounded corners and notch in landscape-->
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1, viewport-fit=cover">
<title>Julio Biason .Me 4.3</title>
<!-- CSS -->
<link rel="stylesheet" href="https://blog.juliobiason.me/print.css" media="print">
<link rel="stylesheet" href="https://blog.juliobiason.me/poole.css">
<link rel="stylesheet" href="https://blog.juliobiason.me/hyde.css">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=PT+Sans:400,400italic,700|Abril+Fatface">
</head>
<body class=" ">
<div class="sidebar">
<div class="container sidebar-sticky">
<div class="sidebar-about">
<a href="https:&#x2F;&#x2F;blog.juliobiason.me"><h1>Julio Biason .Me 4.3</h1></a>
<p class="lead">Old school dev living in a 2.0 dev world</p>
</div>
<ul class="sidebar-nav">
<li class="sidebar-nav-item"><a href="&#x2F;">English</a></li>
<li class="sidebar-nav-item"><a href="&#x2F;pt">Português</a></li>
<li class="sidebar-nav-item"><a href="&#x2F;tags">Tags (EN)</a></li>
<li class="sidebar-nav-item"><a href="&#x2F;pt&#x2F;tags">Tags (PT)</a></li>
</ul>
</div>
</div>
<div class="content container">
<div class="post">
<h1 class="post-title">Python Data Science Essentials - Learn the fundamentals of Data Science with Python - Alberto Boschetti</h1>
<span class="post-date">
2016-12-16
<a href="https://blog.juliobiason.me/tags/books/">#books</a>
<a href="https://blog.juliobiason.me/tags/alberto-boschetti/">#alberto boschetti</a>
<a href="https://blog.juliobiason.me/tags/reviews/">#reviews</a>
<a href="https://blog.juliobiason.me/tags/python/">#python</a>
<a href="https://blog.juliobiason.me/tags/data-science/">#data science</a>
<a href="https://blog.juliobiason.me/tags/it/">#it</a>
<a href="https://blog.juliobiason.me/tags/stars-2/">#stars:2</a>
<a href="https://blog.juliobiason.me/tags/published-2015/">#published:2015</a>
</span>
<p><a href="https://www.goodreads.com/book/show/25527772-python-data-science-essentials---learn-the-fundamentals-of-data-science">GoodReads Summary</a>:
Key Features Quickly get familiar with data science using Python Save time -
and effort - with all the essential tools explained Create effective data
science projects and avoid common pitfalls with the help of examples and hints
dictated by experience Book Description</p>
<span id="continue-reading"></span><div>
★★☆☆☆
</div>
<p>It's hard to explain this book, mostly because it's hard to get to whom it is
targeted.</p>
<p>Is it targeted to people that already know Machine Learning and want to learn
Python? No, the book goes into lengths into some algorithms and has &quot;easy to
write, but not quite right&quot; code to do so.</p>
<p>Is it targeted to people that know Python but want to learn Machine Learning?
No; even if some algorithms are explained in length, some aren't and there is
very little &quot;you use this when you have data like that&quot; explanations.
Actually, there is very little explanation on where an algorithm should be
used.</p>
<p>Is it targeted to people that don't know Python and don't know Machine
Learning and want to learn but? This is the gray area of the book: Again, the
code is pretty simple and does not follow Python coding standards and the ML
part is really shallow on the &quot;when&quot; and &quot;why&quot; sections.</p>
<p>In the end, the book is simply an extended version of Scikit-Learn manual --
and I even have doubts if the manual isn't better because it explains when an
algorithm should be used.</p>
</div>
</div>
</body>
</html>