Julio Biason
3 years ago
7 changed files with 463 additions and 0 deletions
@ -0,0 +1,11 @@
|
||||
{ |
||||
"blurb": "Learn about conditionals and avoid a meltdown by developing a simple control system for a Nuclear Reactor.", |
||||
"icon": "circular-buffer", |
||||
"authors": ["sachsom95", "BethanyG"], |
||||
"contributors": ["kbuc"], |
||||
"files": { |
||||
"solution": ["conditionals.py"], |
||||
"test": ["conditionals_test.py"], |
||||
"exemplar": [".meta/exemplar.py"] |
||||
} |
||||
} |
@ -0,0 +1 @@
|
||||
{"track":"python","exercise":"meltdown-mitigation","id":"28cf35db9e26476f84878c7ab42700a3","url":"https://exercism.org/tracks/python/exercises/meltdown-mitigation","handle":"JBiason","is_requester":true,"auto_approve":false} |
@ -0,0 +1,63 @@
|
||||
# Help |
||||
|
||||
## Running the tests |
||||
|
||||
You can run the included tests by typing `pytest <exercisename>_test.py` on the command line from within the exercise's directory. |
||||
|
||||
You can also tell Python to run the pytest module on the command line from either within the exercise directory or with a path to the exercise directory. |
||||
`python -m pytest <exercisename>_test.py` from within the exercise directory. |
||||
|
||||
`python -m pytest /fully/qualified/path/to/<exercisename>/` OR `python -m pytest realtive/path/to/<exercisename>` from a non-exercise directory. |
||||
|
||||
Many IDE's and code editors also have built-in support for using PyTest to run tests. |
||||
|
||||
- [Visual Studio Code](https://code.visualstudio.com/docs/python/testing) |
||||
- [PyCharm Professional & Community Editions](https://www.jetbrains.com/help/pycharm/pytest.html#create-pytest-test) |
||||
- [Atom](https://atom.io/packages/atom-python-test) |
||||
- [Spyder](https://www.spyder-ide.org/blog/introducing-unittest-plugin/) |
||||
- [Sublime](https://github.com/kaste/PyTest) |
||||
- [vim-test](https://github.com/vim-test/vim-test) |
||||
|
||||
See the [Python tests page](https://github.com/exercism/python/blob/main/docs/TESTS.md) for more information. |
||||
|
||||
### Common `pytest` options |
||||
|
||||
- `-v` : enable verbose output. |
||||
- `-x` : stop running tests on first failure. |
||||
- `--ff` : run failures from previous test before running other test cases. |
||||
|
||||
For other options, see `python -m pytest -h`. PyTest documentation can be found [here](https://docs.pytest.org/en/latest/getting-started.html). |
||||
|
||||
## Submitting your solution |
||||
|
||||
You can submit your solution using the `exercism submit conditionals.py` command. |
||||
This command will upload your solution to the Exercism website and print the solution page's URL. |
||||
|
||||
It's possible to submit an incomplete solution which allows you to: |
||||
|
||||
- See how others have completed the exercise |
||||
- Request help from a mentor |
||||
|
||||
## Need to get help? |
||||
|
||||
If you'd like help solving the exercise, check the following pages: |
||||
|
||||
- The [Python track's documentation](https://exercism.org/docs/tracks/python) |
||||
- [Exercism's support channel on gitter](https://gitter.im/exercism/support) |
||||
- The [Frequently Asked Questions](https://exercism.org/docs/using/faqs) |
||||
|
||||
Should those resources not suffice, you could submit your (incomplete) solution to request mentoring. |
||||
|
||||
Below are some resources for getting help if you run into trouble: |
||||
|
||||
- [The PSF](https://www.python.org) hosts Python downloads, documentation, and community resources. |
||||
- [Python Community on Discord](https://pythondiscord.com/) is a very helpful and active community. |
||||
- [#python on Libera.chat](https://www.python.org/community/irc/) this is where the cored developers for the language hang out and get work done. |
||||
- [Exercism on Gitter](https://gitter.im/exercism/home) join the Python room for Python-related questions or problems. |
||||
- [/r/learnpython/](https://www.reddit.com/r/learnpython/) is a subreddit designed for Python learners. |
||||
- [Python Community Forums](https://discuss.python.org/) |
||||
- [Pythontutor](http://pythontutor.com/) for stepping through small code snippets visually. |
||||
|
||||
|
||||
Additionally, [StackOverflow](http://stackoverflow.com/questions/tagged/python) is a good spot to search for your problem/question to see if it has been answered already. |
||||
If not - you can always [ask](https://stackoverflow.com/help/how-to-ask) or [answer](https://stackoverflow.com/help/how-to-answer) someone else's question. |
@ -0,0 +1,47 @@
|
||||
# Hints |
||||
|
||||
## General |
||||
|
||||
- The Python Docs on [Control Flow Tools][control flow tools] and the Real Python tutorial on [conditionals][real python conditionals] are great places to start. |
||||
- The Python Docs on [Boolean Operations][boolean operations] can be a great refresher on `bools`, as can the Real Python tutorial on [booleans][python booleans]. |
||||
- The Python Docs on [Comparisons][comparisons] and [comparisons examples][python comparisons examples] can be a great refresher for comparisons. |
||||
|
||||
## 1. Check for criticality |
||||
|
||||
- Comparison operators and boolean operations can be combined and used with conditionals. |
||||
- Conditional expressions must evaluate to `True` or `False`. |
||||
- `else` can be used for a code block that will execute when all conditional tests return `False`. |
||||
|
||||
```python |
||||
>>> item = 'blue' |
||||
>>> item_2 = 'green' |
||||
|
||||
>>> if len(item) >=3 and len(item_2) < 5: |
||||
print('Both pass the test!') |
||||
elif len(item) >=3 or len(item_2) < 5: |
||||
print('One passes the test!') |
||||
else: |
||||
print('None pass the test!') |
||||
... |
||||
One passes the test! |
||||
``` |
||||
|
||||
## 2. Determine the Power output range |
||||
|
||||
- Comparison operators can be combined and used with conditionals. |
||||
- Any number of `elif` statements can be used as "branches". |
||||
- Each "branch" can have a separate `return` |
||||
|
||||
## 3. Fail Safe Mechanism |
||||
|
||||
- Comparison operators can be combined and used with conditionals. |
||||
- Any number of `elif` statements can be used as "branches". |
||||
- Each "branch" can have a separate `return` |
||||
|
||||
|
||||
[python comparisons examples]: https://www.tutorialspoint.com/python/comparison_operators_example.htm |
||||
[boolean operations]: https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not |
||||
[comparisons]: https://docs.python.org/3/library/stdtypes.html#comparisons |
||||
[python booleans]: https://realpython.com/python-boolean/ |
||||
[real python conditionals]: https://realpython.com/python-conditional-statements/ |
||||
[control flow tools]: https://docs.python.org/3/tutorial/controlflow.html |
@ -0,0 +1,173 @@
|
||||
# Meltdown Mitigation |
||||
|
||||
Welcome to Meltdown Mitigation on Exercism's Python Track. |
||||
If you need help running the tests or submitting your code, check out `HELP.md`. |
||||
If you get stuck on the exercise, check out `HINTS.md`, but try and solve it without using those first :) |
||||
|
||||
## Introduction |
||||
|
||||
In Python, [`if`][if statement], `elif` (_a contraction of 'else and if'_) and `else` statements are used to [control the flow][control flow tools] of execution and make decisions in a program. |
||||
Unlike many other programming languages, Python versions 3.9 and below do not offer a formal case-switch statement, instead using multiple `elif` statements to serve a similar purpose. |
||||
|
||||
Python 3.10 introduces a variant case-switch statement called `pattern matching`, which will be covered separately in another concept. |
||||
|
||||
Conditional statements use expressions that must resolve to `True` or `False` -- either by returning a `bool` directly, or by evaluating ["truthy" or "falsy"][truth value testing]. |
||||
|
||||
```python |
||||
x = 10 |
||||
y = 5 |
||||
|
||||
# The comparison '>' returns the bool 'True', |
||||
# so the statement is printed. |
||||
if x > y: |
||||
print("x is greater than y") |
||||
... |
||||
>>> x is greater than y |
||||
``` |
||||
|
||||
When paired with `if`, an optional `else` code block will execute when the original `if` condition evaluates to `False`: |
||||
|
||||
```python |
||||
x = 5 |
||||
y = 10 |
||||
|
||||
# The comparison '>' here returns the bool 'False', |
||||
# so the 'else' block is executed instead of the 'if' block. |
||||
if x > y: |
||||
print("x is greater than y") |
||||
else: |
||||
print("y is greater than x") |
||||
... |
||||
>>> y is greater than x |
||||
``` |
||||
|
||||
`elif` allows for multiple evaluations/branches. |
||||
|
||||
```python |
||||
x = 5 |
||||
y = 10 |
||||
z = 20 |
||||
|
||||
# The 'elif' statement allows for the checking of more conditions. |
||||
if x > y: |
||||
print("x is greater than y and z") |
||||
elif y > z: |
||||
print("y is greater than x and z") |
||||
else: |
||||
print("z is great than x and y") |
||||
... |
||||
>>> z is great than x and y |
||||
``` |
||||
|
||||
[Boolean operations][boolean operations] and [comparisons][comparisons] can be combined with conditionals for more complex testing: |
||||
|
||||
```python |
||||
|
||||
>>> def classic_fizzbuzz(number): |
||||
if number % 3 == 0 and number % 5 == 0: |
||||
return 'FizzBuzz!' |
||||
elif number % 5 == 0: |
||||
return 'Buzz!' |
||||
elif number % 3 == 0: |
||||
return 'Fizz!' |
||||
else: |
||||
return str(number) |
||||
|
||||
>>> classic_fizzbuzz(15) |
||||
'FizzBuzz!' |
||||
|
||||
>>> classic_fizzbuzz(13) |
||||
'13' |
||||
``` |
||||
|
||||
[if statement]: https://docs.python.org/3/reference/compound_stmts.html#the-if-statement |
||||
[control flow tools]: https://docs.python.org/3/tutorial/controlflow.html#more-control-flow-tools |
||||
[truth value testing]: https://docs.python.org/3/library/stdtypes.html#truth-value-testing |
||||
[boolean operations]: https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not |
||||
[comparisons]: https://docs.python.org/3/library/stdtypes.html#comparisons |
||||
|
||||
## Instructions |
||||
|
||||
In this exercise, we'll develop a simple control system for a nuclear reactor. |
||||
|
||||
For a reactor to produce the power it must be in a state of _criticality_. |
||||
If the reactor is in a state less than criticality, it can become damaged. |
||||
If the reactor state goes beyond criticality, it can overload and result in a meltdown. |
||||
We want to mitigate the chances of meltdown and correctly manage reactor state. |
||||
|
||||
The following three tasks are all related to writing code for maintaining ideal reactor state. |
||||
|
||||
## 1. Check for criticality |
||||
|
||||
The first thing a control system has to do is check if the reactor is balanced in criticality. |
||||
A reactor is said to be critical if it satisfies the following conditions: |
||||
|
||||
- The temperature is less than 800. |
||||
- The number of neutrons emitted per second is greater than 500. |
||||
- The product of temperature and neutrons emitted per second is less than 500000. |
||||
|
||||
Implement the function `is_criticality_balanced()` that takes `temperature` and `neutrons_emitted` as parameters, and returns `True` if the criticality conditions are met, `False` if not. |
||||
|
||||
```python |
||||
>>> is_criticality_balanced(750, 600) |
||||
True |
||||
``` |
||||
|
||||
## 2. Determine the Power output range |
||||
|
||||
Once the reactor has started producing power its efficiency needs to be determined. |
||||
Efficiency can be grouped into 4 bands: |
||||
|
||||
1. `green` -> efficiency of 80% or more, |
||||
2. `orange` -> efficiency of less than 80% but at least 60%, |
||||
3. `red` -> efficiency below 60%, but still 30% or more, |
||||
4. `black` -> less than 30% efficient. |
||||
|
||||
The percentage value can be calculated as `(generated_power/theoretical_max_power)*100` |
||||
where `generated_power` = `voltage` * `current`. |
||||
Note that the percentage value is usually not an integer number, so make sure to consider the |
||||
proper use of the `<` and `<=` comparisons. |
||||
|
||||
Implement the function `reactor_efficiency(<voltage>, <current>, <theoretical_max_power>)`, with three parameters: `voltage`, |
||||
`current`, and `theoretical_max_power`. |
||||
This function should return the efficiency band of the reactor : 'green', 'orange', 'red', or 'black'. |
||||
|
||||
```python |
||||
>>> reactor_efficiency(200,50,15000) |
||||
'orange' |
||||
``` |
||||
|
||||
## 3. Fail Safe Mechanism |
||||
|
||||
Your final task involves creating a fail-safe mechanism to avoid overload and meltdown. |
||||
This mechanism will determine if the reactor is below, at, or above the ideal criticality threshold. |
||||
Criticality can then be increased, decreased, or stopped by inserting (or removing) control rods into the reactor. |
||||
|
||||
Implement the function called `fail_safe()`, which takes 3 parameters: `temperature`, |
||||
`neutrons_produced_per_second`, and `threshold`, and outputs a status code for the reactor. |
||||
|
||||
- If `temperature * neutrons_produced_per_second` < 90% of `threshold`, output a status code of 'LOW' |
||||
indicating that control rods must be removed to produce power. |
||||
|
||||
- If `temperature * neutrons_produced_per_second` are within plus or minus 10% of the `threshold` |
||||
the reactor is in _criticality_ and the status code of 'NORMAL' should be output, indicating that the |
||||
reactor is in optimum condition and control rods are in an ideal position. |
||||
|
||||
- If `temperature * neutrons_produced_per_second` is not in the above-stated ranges, the reactor is |
||||
going into meltdown and a status code of 'DANGER' must be passed to immediately shut down the reactor. |
||||
|
||||
```python |
||||
>>> fail_safe(temperature=1000, neutrons_produced_per_second=30, threshold=5000) |
||||
'DANGER' |
||||
``` |
||||
|
||||
## Source |
||||
|
||||
### Created by |
||||
|
||||
- @sachsom95 |
||||
- @BethanyG |
||||
|
||||
### Contributed to by |
||||
|
||||
- @kbuc |
@ -0,0 +1,95 @@
|
||||
""" Meltdown Mitigation exercise """ |
||||
|
||||
from typing import Union |
||||
from typing import Literal |
||||
|
||||
EFFICIENCY_GREEN = 'green' |
||||
EFFICIENCY_ORANGE = 'orange' |
||||
EFFICIENCY_RED = 'red' |
||||
EFFICIENCY_BLACK = 'black' |
||||
EFFICIENCY = Literal[EFFICIENCY_GREEN, EFFICIENCY_ORANGE, EFFICIENCY_RED, |
||||
EFFICIENCY_BLACK] |
||||
|
||||
FAIL_SAFE_LOW = 'LOW' |
||||
FAIL_SAFE_NORMAL = 'NORMAL' |
||||
FAIL_SAFE_DANGER = 'DANGER' |
||||
FAIL_SAFE = Literal[FAIL_SAFE_LOW, FAIL_SAFE_NORMAL, FAIL_SAFE_DANGER] |
||||
|
||||
|
||||
def is_criticality_balanced(temperature: Union[int, float], |
||||
neutrons_emitted: Union[int, float]) -> bool: |
||||
"""Verify criticality is balanced. |
||||
|
||||
:param temperature: temperature value (integer or float) |
||||
:param neutrons_emitted: number of neutrons emitted per second (integer or float) |
||||
:return: boolean True if conditions met, False if not |
||||
|
||||
A reactor is said to be critical if it satisfies the following conditions: |
||||
- The temperature is less than 800. |
||||
- The number of neutrons emitted per second is greater than 500. |
||||
- The product of temperature and neutrons emitted per second is less than 500000. |
||||
""" |
||||
return (temperature < 800 |
||||
and neutrons_emitted > 500 |
||||
and ((neutrons_emitted * temperature) < 500000)) |
||||
|
||||
|
||||
def reactor_efficiency(voltage: Union[int, float], |
||||
current: Union[int, float], |
||||
theoretical_max_power: Union[int, float]) -> EFFICIENCY: |
||||
"""Assess reactor efficiency zone. |
||||
|
||||
:param voltage: voltage value (integer or float) |
||||
:param current: current value (integer or float) |
||||
:param theoretical_max_power: power that corresponds to a 100% efficiency (integer or float) |
||||
:return: str one of 'green', 'orange', 'red', or 'black' |
||||
|
||||
Efficiency can be grouped into 4 bands: |
||||
|
||||
1. green -> efficiency of 80% or more, |
||||
2. orange -> efficiency of less than 80% but at least 60%, |
||||
3. red -> efficiency below 60%, but still 30% or more, |
||||
4. black -> less than 30% efficient. |
||||
|
||||
The percentage value is calculated as |
||||
(generated power/ theoretical max power)*100 |
||||
where generated power = voltage * current |
||||
""" |
||||
generated_power = voltage * current |
||||
efficiency = (generated_power / theoretical_max_power) * 100 |
||||
|
||||
efficiency_color = EFFICIENCY_BLACK |
||||
if efficiency >= 80: |
||||
efficiency_color = EFFICIENCY_GREEN |
||||
elif efficiency >= 60: |
||||
efficiency_color = EFFICIENCY_ORANGE |
||||
elif efficiency >= 30: |
||||
efficiency_color = EFFICIENCY_RED |
||||
|
||||
return efficiency_color |
||||
|
||||
|
||||
def fail_safe(temperature: Union[int, float], |
||||
neutrons_produced_per_second: Union[int, float], |
||||
threshold: Union[int, float]): |
||||
"""Assess and return status code for the reactor. |
||||
|
||||
:param temperature: value of the temperature (integer or float) |
||||
:param neutrons_produced_per_second: neutron flux (integer or float) |
||||
:param threshold: threshold (integer or float) |
||||
:return: str one of: 'LOW', 'NORMAL', 'DANGER' |
||||
|
||||
- `temperature * neutrons per second` < 90% of `threshold` == 'LOW' |
||||
- `temperature * neutrons per second` +/- 10% of `threshold` == 'NORMAL' |
||||
- `temperature * neutrons per second` is not in the above-stated ranges == 'DANGER' |
||||
""" |
||||
heated_neutrons = temperature * neutrons_produced_per_second |
||||
efficiency = (heated_neutrons / threshold) * 100 |
||||
|
||||
state = FAIL_SAFE_DANGER |
||||
if efficiency < 90: |
||||
state = FAIL_SAFE_LOW |
||||
elif efficiency >= 90 and efficiency <= 110: |
||||
state = FAIL_SAFE_NORMAL |
||||
|
||||
return state |
@ -0,0 +1,73 @@
|
||||
import unittest |
||||
import pytest |
||||
from conditionals import (is_criticality_balanced, |
||||
reactor_efficiency, |
||||
fail_safe) |
||||
|
||||
|
||||
class MeltdownMitigationTest(unittest.TestCase): |
||||
"""Test cases for Meltdown mitigation exercise. |
||||
""" |
||||
|
||||
@pytest.mark.task(taskno=1) |
||||
def test_is_criticality_balanced(self): |
||||
"""Testing border cases around typical points. |
||||
|
||||
T, n == (800, 500), (625, 800), (500, 1000), etc. |
||||
|
||||
""" |
||||
|
||||
test_data = ((750, 650, True), (799, 501, True), (500, 600, True), |
||||
(1000, 800, False), (800, 500, False), (800, 500.01, False), |
||||
(799.99, 500, False), (500.01, 999.99, False), (625, 800, False), |
||||
(625.99, 800, False), (625.01, 799.99, False), (799.99, 500.01, True), |
||||
(624.99, 799.99, True), (500, 1000, False), (500.01, 1000, False), |
||||
(499.99, 1000, True)) |
||||
|
||||
for variant, data in enumerate(test_data, start=1): |
||||
temperature, neutrons_emitted, expected = data |
||||
with self.subTest(f"variation #{variant}", temperature=temperature, neutrons_emitted=neutrons_emitted, expected=expected): |
||||
got = is_criticality_balanced(temperature, neutrons_emitted) |
||||
msg=f"Expected {expected} but returned {got} with T={temperature} and neutrinos={neutrons_emitted}" |
||||
self.assertEqual(got, expected, msg) |
||||
|
||||
@pytest.mark.task(taskno=2) |
||||
def test_reactor_efficiency(self): |
||||
voltage = 10 |
||||
theoretical_max_power = 10000 |
||||
|
||||
# The numbers are chosen so that current == 10 x percentage |
||||
test_data = ((1000, 'green'), (999, 'green'), (800, 'green'), |
||||
(799, 'orange'), (700, 'orange'), (600, 'orange'), |
||||
(599, 'red'), (560, 'red'), (400, 'red'), (300, 'red'), |
||||
(299, 'black'), (200, 'black'), (0, 'black')) |
||||
|
||||
for variant, data in enumerate(test_data, start=1): |
||||
current, expected = data |
||||
with self.subTest(f"variation #{variant}", voltage=voltage, current=current, |
||||
theoretical_max_power=theoretical_max_power, expected=expected): |
||||
got = reactor_efficiency(voltage, current, theoretical_max_power) |
||||
msg=f"Expected {expected} but returned {got} with voltage={voltage}, current={current}, " \ |
||||
f"max_pow={theoretical_max_power}" |
||||
self.assertEqual(got, expected, msg) |
||||
|
||||
@pytest.mark.task(taskno=3) |
||||
def test_fail_safe(self): |
||||
temperature = 10 |
||||
threshold = 10000 |
||||
test_data = ((399, 'LOW'), (300, 'LOW'), (1, 'LOW'), |
||||
(0, 'LOW'), (901, 'NORMAL'), (1000, 'NORMAL'), |
||||
(1099, 'NORMAL'), (899, 'LOW'), (700, 'LOW'), |
||||
(400, 'LOW'), (1101, 'DANGER'), (1200, 'DANGER')) |
||||
|
||||
for variant, data in enumerate(test_data, start=1): |
||||
neutrons_produced_per_second, expected = data |
||||
|
||||
with self.subTest(f"variation #{variant}", temperature=temperature, |
||||
neutrons_produced_per_second=neutrons_produced_per_second, |
||||
threshold=threshold, expected=expected): |
||||
|
||||
got = fail_safe(temperature, neutrons_produced_per_second, threshold) |
||||
msg = f"Expected {expected} but returned {got} with T={temperature}, " \ |
||||
f"neutrons={neutrons_produced_per_second}, threshold={threshold}" |
||||
self.assertEqual(got, expected, msg) |
Loading…
Reference in new issue